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We investigate the influence of density inhomogeneities on the merger of two co-
rotating two-dimensional vortices at infinite Froude number. In this situation,
buoyancy effects are negligible, yet density variations still affect the flow by pure
inertial effects through the baroclinic torque. We first re-address the effects of a finite
Reynolds number on the interaction between two identical Gaussian vortices. Then,
by means of direct numerical simulations, we show that vortices transporting light
fluid in a heavier counterpart merge from further distances than vortices in a uniform
density medium. On the other hand, heavy vortices only merge from small separation
distances. We measure the critical distance a/b, of the vortex radii to their initial
separation distance. It departs from the homogeneous threshold of 0.22 in response to
increasing density contrasts between the vortices and their surroundings. An analysis
of the contribution of the baroclinic vorticity to the dynamics of the flow is detailed
and explains the observed behaviour. This analysis is completed by a simple model
based on point vortices that mimics the flow. It is concluded that vortices carrying
light fluid are more likely to generate large-scale structures than heavy ones in an
inhomogeneous fluid.

1. Introduction

Vortices — or swirling masses of fluid — are ubiquitous in nature and are the key
dynamical features in many industrial and geophysical contexts. Hence, understanding
how these structures interact is crucial to the understanding of many complex fluid
flows. Vortex merger or more generally the strong interaction between two co-rotating
two-dimensional vortices has been extensively studied. Previous studies first addressed
the interaction between two uniform patches of vorticity in a homogeneous inviscid
fluid. One of the first focuses of these studies was the determination of the margin of
stability for a pair of vorticity patches in mutual equilibrium. The margin of stability,
corresponding to a critical distance between the two vortices below which the flow
becomes unstable, is associated with the critical merger distance as the instability may
trigger a strong interaction between the two co-rotating vortices. This issue has been
investigated by Saffman & Szeto (1980) and has been revisited in Dritschel (1995) and
Cerretelli & Williamson (2003). On the other hand, numerical simulations based on
contour advection (see Melander, Zabusky & McWilliams 1988; Dritschel & Waugh
1992; Waugh 1992; Dritschel 1995) were used to address the nonlinear evolution of
the flow, illustrating its possible complexity with complete or partial merger or even
only weak exchange of vorticity between the two vortices.

More recently, the interaction of distributed vortices has been examined. For
example, Meunier et al. (2002) considered the interaction between two distributed
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vortices both experimentally and theoretically, and Meunier, Le Dizes & Leweke
(2005) illustrated the nonlinear evolution of such an interaction by direct numerical
simulations. They concluded that the critical distance for distributed vortices and
vortex patches to interact strongly might be written as a multiple of a length scale
defined from the angular impulse and the circulation.

Most of these studies aimed to address one of the forms of vortex interaction
observed in two-dimensional turbulence, in an attempt to explain in the physical space
the ‘inverse’ energy cascade and the direct enstrophy cascade commonly observed in
the spectral space. During the merger process, the creation of larger vortices feeds the
large scales of the energy spectrum whereas the generation of low-energy filaments
feeds the small scales of the enstrophy spectral distribution.

In this paper, we address the strong interaction between two two-dimensional
radially stratified vortices in the limit of infinite Froude number. We thus turn our
attention to vortex dynamics in inertial binary mixing flows, i.e. where two fluids
of different densities are mixed in a flow unaffected by buoyancy forces. This has
implications in mixing flows such as those encountered in combustion with non-
premixed turbulent combustion depending strongly on the turbulent mixing of the
fuel and oxidizer (e.g. Peters 2000). It is also relevant to basic mechanisms occurring
in the interaction between the engine jet and the trailing vortices in an aircraft wake
(Paoli, Laporte & Cuenot 2003). Large energy release by electric discharge due to
lightning of laser-induced plasma discharge in the atmosphere have also been reported
by Kurzweil, Livne & Meerson (2003) to exhibit baroclinic vorticity production and
consecutive turbulent mixing of inhomogeneous fluids.

In two-dimensional turbulence, the formation of closed streamline patterns yields
vortex cores trapping unmixed species. As noted by Cardoso et al. (1996) from quasi-
two-dimensional experiments, the residence time of the fluid sample within the vortex
core is thus close to the vortex lifetime. This, in turn, depends on strong vortex
interactions among which the merger is responsible for fluid ejection and mixing,
see Rogberg & Dritschel (2000) for the passive scalar case. While some approaches
in this field are concerned with the statistical and spectral properties of the flow
(Sandoval 1995; Bretonnet, Joly & Chassaing 2002), we focus here on the vortex
dynamics and the description of elementary events relevant to the mixing efficiency
of density-contrasted fluids.

The stability analysis of isolated vortices in Joly, Fontane & Chassaing (2005)
have shown the robustness of low-density vortices and the receptivity of high-density
vortices to perturbations consecutive to a Rayleigh-Taylor instability. As concluded
in this paper, this instability alone may result in mass segregation by vorticity in a
turbulent context. Work on inhomogeneous two-dimensional turbulence by Joly (2002
and ongoing) yields that turbulence evolves toward a dominant population of vortices
containing light fluid and only a few vortices carrying heavy fluid. It proves also that
vortex interactions play a major role in the mass-segregation mechanism together
with the Rayleigh-Taylor instability. Among all possible interactions between two
vortices, we limit our attention to the binary interaction between two similar co-
rotating vortices sharing the same density stratification. More specifically, we examine
how the critical merger is affected by the density ratio between the vortex core and
its irrotational counterpart. The effects of asymmetries in the circulation between the
two vortices will be addressed in subsequent work.

The paper is organized as follows. Section 2 presents the formulation of the equa-
tions governing the flow and provides details of the numerical algorithm. It also
discusses the effects of the periodic boundary conditions on the interaction. Section 3
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contains the main results of the study. We first revisit the influence of the Reynolds
number on the interaction between the two vortices in the homogeneous case. Then
we address the influence of the Atwood number, which measures the density contrast,
on the critical merger distance. We show that light vortices in a heavy counterpart
are more likely to merge than heavy vortices in a light counterpart. We next provide
a simplified model based on an analysis of the effect of the baroclinic torque which
redistributes vorticity due to the misalignment of the local acceleration of the fluid
particles and the density gradient in the inhomogeneous case. Our conclusions and
perspectives are given in §4.

2. Formulation
2.1. Basic equations

We consider the binary mixing of two species of density p. and p, respectively, in the
vortex core and in the background fluid. By denoting Ap =0.5(p. — p5) the scale for
the density difference and p,, = 0.5(p.+ pp) the mean density, the density contrast is the
so-called Atwood number At = Ap/p,,. This parameter comes out as the fundamental
measure of inertia effect in the dimensionless momentum and vorticity equations.
An infinitely light vortex core corresponds to At =—1 whereas At =1 is for infinitely
heavy vortices.

In the limit of zero Mach number, the density of any fluid particle can be related
to the mass fraction of the core fluid, denoted by C, according to 1/p=C/p. + (1 —
C)/pp (see Bird, Stewart & Lightfoot 1960, on this point and for the mass fraction
transport equation herein). Denoting & the Fickian diffusivity of the core fluid into
the background one, and D, the material derivative, the concentration equation is a
pure advection—diffusion equation,

pD,C =V (p2VC). (2.1)
It is associated with the standard continuity equation:
D;p+pV-u=0. (2.2)

When combining (2.1), (2.2) and the differentiated equation of state, it is found that
the non-solenoidal part of the velocity field is of a diffusive nature (see Joseph 1990;
Sandoval 1995)

Veu=-V- <@Vp>. (2.3)
P

We assume constant diffusivities such that the divergence of the velocity field reads
V-u=—2A(In p/py). Denoting ¢ = In(p/pp), the velocity field may be written accord-
ing to the Hodge decomposition u =v — ZVp where V-v=0. As such, it can be
viewed as the combination of a solenoidal advection field and a pure dilatational
one resulting from mass diffusion. Assuming constant diffusivities biases the flow at
dissipative scales. These scales are essentially seen in the vorticity filaments generated
during the vortex interaction. These filaments are almost passively advected and are
irrelevant to the large-scale interaction leading to the vortex merger.

For the description of the density field we retain the dimensionless transport equa-
tion for the modified density o,

D,0 = (ReSc) ' Ag, (2.4)
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and the dimensionless constraint V-u=—(ReSc)"'Ap, where Re and Sc are,
respectively, the Reynolds and Schmidt numbers. The Reynolds number is defined as
Re=1TI"/v where I is the circulation of one vortex and v is the kinematic viscosity. We
take Sc=v/2 =1. Let aq be the initial characteristic radius of the vortex cores. We
denote by g’ the projection of the gravity field onto the vortex plane. We thus form the
vortex Froude number Fr=(I"/ay)/./Atapg’ and consider Fr> 1. The dimensionless
momentum equation reads

1
D,u =——Vp+ Re 'Au. (2.5)
P

Denoting = p/p the specific pressure, the corresponding dimensionless vorticity
equation reads

1
D,w = —AtVn x Vo + R—Aa). (2.6)
e

It is seen that the baroclinic torque on the right-hand side of the vorticity equation
scales with the Atwood number.

2.2. Numerics

The density equation (2.4) and the momentum equation (2.5) are advanced in time
using a third-order Runge—-Kutta scheme. During each step of the scheme, we use a
projection method (see Chorin 1969; Bell, Colella & Glaz 1989) transposed to the
variable-density situation. The equations are first recast in the form

80 = —(u*V)o + (ReSe) ' Ao, (2.7a)
A
ou=—-Vm, +w xu—mnVo+ ReilAu, (2.7b)
B

where n, =7 + u?/2. Then we use a three-step procedure to evaluate the estimated
density and velocity fields at the next substep 7y

ty ty
ot =o' +/ Adt, u' =u +/ Bdz, (2.8a)
t t
1
AT, = E[V'u* — (ReSc) 1 A", (2.8b)
u =u" — AtVm. (2.8¢)

The velocity divergence is consistent with the density field since, by construction,
V-u'* = —(ReSc)"'Ap™. As reported by Nicoud (1998) who adopted a similar
approach in low-Mach-number thermal-mixing flows, the Poisson equation (2.8b)
ensures that the divergent-free constraint is recovered in the inviscid limit. The time
step is variable and adjusted according to the current maximum of velocity ensuring
the Courant—Friedrichs—Lewy condition is respected with CFL = Ar/Ax X max(u)
kept under 0.7.

This procedure is implemented within the frame of a pseudospectral code dealiased
according to the two-thirds rule. The flow is thus doubly periodic in contradiction
with the targeted boundary conditions consisting of an unbounded domain with
non-zero circulation where the vortices evolve. It is known (see Pradeep & Hussain
2004) that the biperiodic conditions result in a background negative vorticity w, that
cancels with the positive net circulation of the vortex flow. This background vorticity
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FIGUre 1. Configuration of the initial conditions with by the initial separation between vortex
centres, ry the truncation radius of the vortex and ag=(J/I")"/? the initial radius of the vortex
core.

decreases while decreasing the ratio of vortex size to width of the square calculation
domain. Let L; be the width of the domain and I" the individual circulation of each
vortex in the pair, then w, =—2I"/L3. The influence of this numerical artefact on the
kinematics and merger time of the vortex pair is further discussed in the Appendix.

2.3. Initial conditions

Following Meunier et al. (2002) who studied the merger of uniform-density two-
dimensional vortices, we use as initial conditions two truncated Gaussian vortices.
Gaussian distributions of vorticity are commonly observed during the early stages of
two-dimensional turbulence (see Jimenez, Moffatt & Vasco 1996). On the other hand,
it was shown by Legras, Dritchel & Caillol (2001) that vortices would be naturally
eroded, losing the weak peripheral vorticity, resembling truncated Gaussian vortices.
The vorticity of each individual vortex is

2

w = Bexp (—ar2> if 0<r <y, (2.9)
o

with
_ "
(1 —exp(—a))’

B

where r is measured from the centre of each vortex

The ratio between the minimum vorticity at the truncation radius ry and the
maximum vorticity at the vortex centre is given by wuin/@max = exp(—a). We take o =3
for which wpin/wmex =0.05. Each vortex is also characterized by its angular impulse
J=[f Sa)(r)rz ds in the polar coordinate system attached to the vortex centre.

Meunier et al. (2002) introduce a length scale a = (J/I")"/?> which is used to norma-
lize the critical merger distance between two-dimensional uniform-density vortices.
This length scale is shown to be the relevant one and allows us to define a universal
criterion for the merger. In the situations described above for homogeneous vortices,
Meunier et al. (2002) showed that the critical merger distance corresponded to
a/b~>~0.22. For the particular case with @« =3 we have rq/apo=1.887. If far enough
from each other, the vortices evolve with an individual characteristic advective time
scale T =2ma’/I" and a viscous time scale 7, =t Re. The spreading rate of the vortex
core radius a by molecular diffusion is a®>=a3 + 4vt. The vortex pair is sketched
in figure 1. For large separation distances, it will revolve in time according to the
turnover time scale Ty =2m*bh3/I" corresponding to the turnover period of a pair of
point vortices with the same circulation I" and initial separation b.

(2.10)
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Homogeneous Vortices with a light core Vortices with a heavy core
Run H!I H2 H3 L1 L2 L3 14 LS5 L6 D1 D2 D3 D4 D5
A 0 0 0 % _2 _1 _1 _1  _1 1 [ 2
5 3 2 2 2 5 4 2 2 2 3
bo/ro 26 29 36 29-3.1 26 29 36 2830 2729 26 29 36 20-21
Re 103-10* 6000 103-10* 6000 6000 103-10* 6000

TaBLE 1. The relevant parameters of the numerical simulations. Simulations are performed
using a 5122 grid, except for cases H3, L5 and D4 for which the resolution is increased to
1536°. The proportion of the width of the vortex pair to the domain width is kept constant
with & = (by + 2ry)/L =1/m.

We superimpose on each vortex a Gaussian radial density distribution. Without
loss of generality, we set p, to 1 and p. is set according to the Atwood number. The
density distribution of each vortex reads

2
p=1+(p.— l)exp<—a:2>. (2.11)

0

We do not truncate the density distribution to preserve bounded values for the density
gradient at the vortex boundary. These initial conditions correspond to a couple of
barotropic vortices with circular isopycnals and circular streamlines implying no
initial baroclinic torque. The density is distributed radially on the same characteristic
radius as the vorticity. The Gaussian distribution of density within the vortices stems
from the self-similarity of density and vorticity profiles spreading by diffusion with
a unit Schmidt number. According to the stability analysis derived by Joly et al.
(2005), isolated heavy vortices of equivalent density and vorticity radii are stable to
the Rayleigh—Taylor instability up to an Atwood number of 0.5.

2.4. Numerical simulations

According to the tests detailed in the Appendix, all the simulations are carried out on
a 512% grid with 4 = 1/x. The ratio of the initial separation distance to the truncation
radius by/ry, the Reynolds number Re=I"/v and the Atwood number may be varied
independently. We measure the time evolution of the distance b between the two
vortices. This distance corresponds to the distance between the two local extrema of
the streamfunction ¥ which indicate the centre of each vortex. We define a ‘merger
time’ 74, which corresponds to the time elapsed until b decreases to a fraction f of
the initial separation b, i.e. b(tf)/by= f.

First, we demonstrate the ability of the numerical method to catch the Reynolds-
number dependence of the merger time in the homogeneous reference case. Then,
defining a time horizon, we apply a simple merger criterion to illustrate the effect of
the density contrast on the critical distance for a given Reynolds number. Reynolds-
number sensitivity is also accounted for as we extend the definition of the critical
separation distance to the variable-density situation. Table 1 gives the list of the
simulation parameters that are used herein. High-resolution cases on a 1024% grid
are carried out at least in order to detail the short-term development of the flow and
study the impact of baroclinic sources of vorticity on the distance between vortex
centres.
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t=80

t=120 t=140

FIGURE 2. Sequence of vorticity contours for the case H1 with (At, Lc¢/r,)=(0,2.6) and
Re=6000. Time in advective units. Contour every wyqx/10 where wyqy 1s the instantaneous
maximum vorticity.

3. Results
3.1. The merger in the homogeneous case

The merger in the homogeneous case H1 is shown in figure 2 from the contours of
vorticity. As expected, we observe a viscous spreading of the vortices followed by
a strong vortex interaction during which vortices merge from their inner edges and
generate filaments of vorticity which are eventually dissipated. Note that in this case,
a/by=0.204 initially. We have investigated the effects of the Reynolds number in the
inhomogeneous situation according to the merger criterion derived by Meunier et al.
(2002). As the Reynolds number is increased, the viscous spreading is slowed down
and it takes longer for the vortices to reach the strong interaction regime referred
to as the convective merger. Using the viscous spreading of an isolated Gaussian
vortex, a>=ad + 4vt, we can define a time origin where the vortex is a point vortex
as ty=—aj/4v. Following Meunier et al. (2002), we define a non-dimensional time
t*=(t —1y)/ Ty such that the viscous spreading of the vortex is now represented by

,  8mihi a\> 8m* .
a’=— t or<b0> = Ret' (3.1)
Hence the non-dimensional critical merger time ¢’ = ARe, where A= (a/by)?/87?,
depends linearly to Re.

An additional time period By is required in the pure convective merger interaction
stage for the separation distance to collapse to a given fraction f of the initial
separation by. This additional time depends only on the fraction f such that the
overall non-dimensional time to reach the condition b/by= f reads

t; = ARe + B. (3.2)

From figure 3, we investigate the influence of the choice of f in the determination
of the critical ratio (a/by).. We see that results converge as long as f is taken to
be less than 0.4, and we find that the critical merger distance for the homogeneous
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FiGURE 3. Influence of the fraction distance x on the critical ratio of the vortex radius to the
separation distance. —, theoretical prediction for distributed truncated vortices with o = 3
according to Meunier et al. (2002); ---, experimental value from the same authors; ——,
theoretical prediction for uniform vortex patches according to Saffman & Szeto (1980); O,
results from direct viscous simulations.

case ~0.22. The discrepancy with the results from other authors reported in the
figure is due to the difference of the approaches as mentioned in §1. The result
was not straightforward since, in a preliminary stage, the viscous spreading proceeds
together with a mutual adaptation of the vortices. Indeed, our initial conditions do
not consist of a pair of steadily rotating vortices, but axisymmetric vortices. Contrary
to the homogeneous situation, we are not able to define an equilibrium state for a
pair of radially stratified vortices. Hence, and for all cases, we start from a simple
axisymmetric configuration. In the homogeneous case, when the simulation starts,
vortices deform tending to relax to the (unstable) equilibrium. Similar deformations
are also seen at early stages of the interaction of radially stratified vortices. In the
stratified cases, these deformations break the barotropy of the vortices, and induce a
baroclinic production/destruction of vorticity.

3.2. Effect of At on the critical distance

Among all simulations performed, we first select three cases to illustrate the
consequences of the inhomogeneous density field. The Reynolds number Re is set
to 6000. The initial separation distance is by/ro=2.6, or ag/by=0.204. The Atwood
number is, respectively, set to 0, —0.5 and 0.5 for the homogeneous H1, the light L3
and the dense D2 initial conditions. Figure 4(a) shows the time evolution of the vortex
separation in advective time units. The merger of homogeneous vortices completes
after 80 advective time units or equivalently after one turnover period Ty. We also see
from figure 4(a) that the merger of light vortices occurs much sooner and completes
by t =40t (case L3). Conversely, the complete merger of vortices is delayed until
t =200t in case D2, ie. if the vortex core is initially three times denser than the
background irrotational fluid. Moreover it is observed that for heavy vortices, the
early interaction yields a slight increase of the separation distance. The underlying
inertia effects are thus favouring the merger of light vortices while initially preventing
the onset of a convective merger interaction between heavy vortices.
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FIGURE 4. (a) Temporal evolution of vortex separation b/by for by/ro=2.6; (b) evolution
of the net production of positive vorticity. Homogeneous vortices case H1 (solid line), light
vortices case L3 (dashed), dense vortices case D2 (dot-dashed).

We integrate the net production of positive or negative vorticity over the domain.
This provides the instantaneous integral over the domain of the positive contribution
of the baroclinic torque to the vorticity budget

+ 1 i
BT = ——Vp xVpo | ds.
D Y

This net source of positive vorticity is exactly balanced by a source of negative
vorticity. It is normalized here by I'/2nt and shown in figure 4(b) beyond the merger
time and until a full merger completes with relaxation to a stable axisymmetric vortex.
The baroclinic vorticity generation is seen to rise immediately after the beginning of
the simulation in response to the mutual deformation of the otherwise barotropic
initial conditions. It then decreases slowly during the viscous stage while diffusion
spreads the vortex cores and smoothes density gradients. The convective merger yields
large deformations and associated large contributions of the baroclinic torque to the
vorticity budget. We thus have a unique scenario for both light and heavy vortex
mergers displaying two stages. When interacting from a small enough distance, heavy
and light vortices exhibit opposite responses to their mutual deformation. During
this first stage, diffusion spreads vortex cores and smoothes density gradients. They
eventually merge in a second stage. In the case of light vortices, the first stage hastens
the merger whereas in the heavy case, diffusion of mass excess in the vortex cores
turns out to be a prerequisite to the convective merger. The convective mergers of
both light and heavy vortex pairs involve large vorticity sources.

From the sequence of density contours in figure 5, we see that the merger of
light vortices proceeds from a classical route. The interaction first deforms the scalar
contours that are connected from their inner sides, r =20, 40. Then the merger of the
vortex cores follows and it is more pronounced at the same stage when ¢ =60 than
in the homogeneous situation, compared with figure 2 at + = 100. During this core
merger, strained density filaments are expelled from the core together with vorticity
filaments, and are eventually dissipated as in the standard scenario. Axisymmetrization
of the resulting slightly larger light vortex ultimately produces a stable barotropic
vortex. The short-term interaction of heavy vortices is shown in figure 6. Their
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t=60 t=80 t=100

FIGURE 5. Sequence of density contours for the case L3 with (At, L¢/r,)=(—0.5, 2.6). Time
in vortex units t =1 /2na§. Contour every (Omax/Pmin)/10.

t=100

t=060

FIGURE 6. Sequence of density contours for the case D2 with (At, Lc/r,)=(0.5, 2.6). Time in
vortex units T = I'/2nad. Contour every (Pmax/Pmin)/ 10.

interaction results in a small increase of the separation distance correlated with an
ongoing adaptation of vorticity sources in response to the loss of barotropy. These
sources, analysed later, are responsible of the particular topology of the advection
field, both preventing any convective merger, and distorting density contours. During
this phase of mutual repulsion, the vortex deformations and small-scale distortions
are promoting viscous diffusion. By ¢ =100, when the separation distance b(¢) has
decreased back around its initial value by, the repulsive effect of baroclinic vorticity
sources has been damped and no longer prevents a convective merger (figure 4a).

In the perspective of vortex interactions in a two-dimensional turbulence context, we
first address the effect of the Atwood number for a fixed Reynolds number Re = 6000
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FIGURE 7. Sensitivity of the merger time to the Atwood number for a fixed Reynolds number
Re=6000. Cases from table 1 with varying initial separations and Atwood numbers are
compared to a reference homogeneous case with initial separation by/ag = 5.5 or by/rg = 2.9
yielding a full merger for a time horizon #, = 1607. Vortices merging sooner than #, (<), vortices
merging later than #, (x) and vortices merging at #, (A—).

by considering the merger time relative to a reference time horizon t, =160t. This
time horizon corresponds to the complete merger time of an homogeneous vortex pair
with initial separation by/ro=2.9, case H2 with Re=6000. Towards this reference
case, a complete merger can occur sooner or later in response to variations of the
initial separation distance or to non-zero Atwood numbers. This leads to a simple
representation of the inertia effects on the critical separation distance by/ay detailed
in figure 7 based on a comprehensive analysis with Atwood numbers spanning from
—4/5 to 2/3. Light vortices for negative Atwood numbers are seen to interact strongly
from larger separation distances than the homogeneous vortex pair. Heavy vortices
do not merge before 7, unless falling within small interaction distances. According
to the prescribed time horizon, no merger can occur within this time horizon for
Atwood numbers above 0.6 even if placed in contact on their inner sides, i.e. for
by — 2r¢ which corresponds here to by/ay— 3.77. From this first inspection, it can be
inferred that the probability of a merger event between heavy vortices in binary-mixing
two-dimensional turbulence will be much lower than for light vortices.

We then analyse the influence of the Reynolds number on the stage preceding
the convective merger. The normalized merger time #;, = (to4 + a3/4v)/ T, is found
in figure 8(a) to increase linearly with the Reynolds number even for At # 0. The
difference between the homogeneous and the inhomogeneous merger lies on the
nonlinear vorticity baroclinic source. Yet, it is still found that the length of the initial
stage preceding the convective merger grows linearly with the Reynolds number for
a given Atwood number. Hence, the time delay added or subtracted before the onset
of the convective merger owing to the non-viscous baroclinic vorticity production
is still affected linearly by mass diffusion. Given a unit Schmidt number, we verify
only that mass diffusion decreases density gradients (and corresponding baroclinic
vorticity sources) on the same time scale as momentum diffusion spreads the vortex
cores.
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FIGURE 8. (a) Merger time f;, versus vortex Reynolds number for a fixed initial distance
bo/ro = 2.9 in the homogeneous case H2 ( ), light vortices case L4 (- - -) and dense vortices

case D3 (———). (b) Merger time #;, versus vortex Reynolds number for a fixed Atwood
number At = 0.5 and varying initial distance D2 with by/ry = 2.6 (---), D3 with by/ro = 2.9
( ) and D4 with by/rg=3.6 (———).

The linearity of the response of 75, to the Reynolds number has been checked to
hold over the whole range of tested Atwood numbers. It motivates the use of the
procedure derived by Meunier et al. (2002) to measure a critical distance for radially
stratified vortices. However, contrary to the homogeneous case, the initial separation
still has an influence on slope A. It is shown in figure 8(b) where the normalized merger
time ¢, 4 is plotted against the Reynolds number for three different initial separations
(bo/ro=12.6,2.9,3.6) and a single Atwood number, At=0.5. We find three different
slopes with the steepest associated to the pair of vortices initially closer, the slope of
initially remote vortices being shallower. While the merger time still grows linearly with
the Reynolds number, the additional mechanism associated with the loss of barotropy
depends on the amplitude of the initial deformation. For initially close vortices, this
deformation is large owing to the strong difference between the pair of axisymmetric
vortices and the homogeneous equilibrium state. In this case, the bias on slope A result-
ing from the density stratification is large since, at the beginning of the strong merger
interaction, the stratification is also close to the initial one. On the opposite and for
initially remote heavy vortices, the initial deformation is small since a pair of remote
axisymmetric vortices is close to an equilibrium state. Moreover, the merger interaction
begins after a preliminary diffusion stage has eroded the density contrast. Both
mechanisms reduce the baroclinic vorticity sources and the slope A tends to be closer
to the one obtained with no stratification. Since the critical distance (a/by). associated
to the measure of slope A depends on the initial distance by, we conclude that there
is no universal measure of the critical distance associated to a given Atwood number.

Moreover, we find that the purely diffusive spreading of the vortex cores is only
observed for vortices which are initially well separated. In these cases, the deformations
of the vortices induced by their straining fields are weak and the vortices remains
mainly barotropic, hence the baroclinic torque is negligible at these initial stages. For
closer vortices, the large initial deformation and the baroclinic vorticity redistribution
significantly alter the evolution of the core size a=./J/I". If by/ro=2.9, we see
from figure 9(a) that massive (resp. light) vortices initially shrink (resp. dilate) in
response to the loss of barotropy during their rapid mutual interaction. When the
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FiGURE 9. Evolution of the vortex core size a = /J/I" for Re = 6000 and (a) by/ro = 2.9; H2
(—), L4 (---), D3 (——) and (b) by/ro = 3.6; H3 (——), L5 (- - -), D4 (——). The linear
slope corresponds to the diffusive spreading of the isolated vortex, a?/a = 1+ (8n/Re) t/z.
Small vertical ticks mark the normalized critical merger time #; , — Bo.4.

initial distance is as large as by/ro = 3.6 (figure 9b), the vortex core spreads according
to a*/a} = 1+ (8n/Re) t/t whatever the Atwood number. The convective merger
thus occurs for by/ry = 3.6 after the simultaneous diffusion of mass and momentum.
As derived in §3.1, the measure of the critical distance from the slope A assumes a
proper preliminary diffusion of the vortices. A virtual diffusive stage is embedded in
the normalized merger time t* = (¢ — ty)/Tp through the time origin t, = —aj/4v. If
not too close, vortices also undergo an actual diffusive spreading at the beginning
of the simulation. This is necessary to ensure a correct use of slope A to obtain a
measure of (a/by)? by 8n*A. This condition is not fulfilled if by/ro = 2.9, and we can
only acknowledge that the normalized merger time grows linearly with the Reynolds
number. It is fulfilled if by/ro = 3.6 and, though specific of this initial separation,
the critical distance (a/by)? deduced from slope A measures density effects made
independent of the Reynolds number. The concept of a critical distance is weakened
when At #+ 0 and should be understood in the following as being always dependent
of the initial separation.

Figure 10 summarizes the sensitivity of the critical separation distance to the
Atwood number measured for an intial distance by/ry = 3.6. Measurements of /8m2A
over the same range of Atwood numbers are also shown when by/ry = 2.9. The trend
is the same as that discussed from the previous point of view based on a time horizon
for a fixed Reynolds number. For negative Atwood numbers, the critical ratio (a/bo).
decreases under the homogeneous threshold. Hence, for a given Reynolds number
and an initial separation, light vortices strongly interact from larger distances than in
the homogeneous situation. For positive Atwood numbers, the critical ratio (a/by).
increases steeply for a pair of vortices with increasing mass excess to the surrounding
fluid. For initial separations below by/ro = 3.6, a critical distance is hardly defined
for Atwood numbers above 0.6.

3.3. Baroclinic sources of vorticity

We now describe in more detail the vorticity distribution within the vortices at the
early stages of the flow evolution to understand better the mechanism that triggers
a rapid merger or slows it down. Since the only difference in the dynamics is the
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FIGURE 10. —, critical separation versus Atwood number for an initial distance by/ro=3.6;
- - -, /812 A versus Atwood number for initially close vortices by/ro = 2.9.
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FIGURE 11. (a) Contours of the cumulative baroclinic vorticity wa and (b) induced velocity
field, for At = —0.5 (low-density vortices) and by/ro = 2.6 at t = 0.2 7. The black spot indicates
the vortex centre.

baroclinic torque which is now active, we focus on the additional vorticity resulting
from this source term. We denote as w, the vorticity field resulting from the difference
between the vorticity of a passive scalar reference case and the vorticity of a current
case with a full contribution of inertia effects. This vorticity difference corresponds to
the vorticity accumulated between the initial state and the current time owing to the
baroclinic sources or sinks:

wp = —/ le xVodzt. (3.3)
particle path 1Y

Note that at the limit of Re — oo, the pressure term Vp/p is balanced by D,u such
that the baroclinic torque is purely inertial, and is directly linked to the misalignment
between the local acceleration of a fluid particle and the local density gradient. The
contours of the cumulative baroclinic vorticity are shown in figure 11(a) on a single
light vortex of the pair at an early stage of the interaction. The vortex displayed
is initially the one at the left in the pair. The second vortex is the antisymmetric
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FiGgure 13. Sketch of the baroclinic quadrupoles.

image of this one. This additional contribution is seen to correspond to a quadrupole
of alternately signed vortices. The formation of these quadrupoles by baroclinic
effects follows the mechanism described by Joly et al. (2005) for deformed isolated
vortices: the response to a deformation of a barotropic vortex on the azimuthal
wavenumber m consists in a multi-pole distribution of alternate 2m vorticity sources
and sinks. Here, the adaptation of each vortex to the strain field generated by the
other one yields a deformation corresponding to m = 2. The two quadrupoles induce
an additional velocity field (figure 115) which brings the vortex centres closer to each
other. Indeed, we see that the centre of the left-hand vortex is pushed to the right,
and by antisymmetry the vortex on the right (not shown) is pushed to the left. For
vortices denser than the background fluid (see figure 12), the signs of the poles of
the dipoles are reversed and consequently, the velocity field induced by w, has a
repulsing effect on the vortices. The vortices are pushed away from each other and
cannot merge within one turnover time.

This observation can be easily explained using a simple model of equally distributed
quadrupoles. The quadrupoles themselves consist of four point vortices. This simple
configuration mimics the additional vorticity distribution observed in the numerical
simulation. The geometry of the configuration is given in figure 13. We attach four
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point vortices located at (x]);—;4 and of circulation +I" to the vortex on the left
(vortex 2), and four point vortices located at (x;);—;4 to the vortex on the right
(vortex 1). For reference, I' is the circulation of the vortex located at x;. All point
vortices are regularly spaced. Although this choice is not generic, it is sufficient for
a qualitative model. Let x; be the geometrical centre of the quadrupole attached to
vortex 1 and x, be the geometrical centre of the quadrupole attached to vortex 2.
From symmetry arguments, we can write uz, = —uz. We then focus only on u(X;).
Moreover, the contributions from vortices (x;) to uz, cancel (as well as contributions
from x; to uz,). The vertical antisymmetry makes the contributions of x| and xj equal,
as well as the contributions of x} and x;. Thus, denoting the separation between
vortices as 2¢, the velocity induced by the quadrupole x! on ¥, is
4

ey =~ s rI. (3.4)
For the pair of light vortices for which the circulation I" is positive, the induced
velocity field makes the centres x; and x, converge toward the centre of the system.
The separation is increased for the high-density vortex pair associated with negative
circulation. This simple model hence explains the phenomenon.

4. Conclusions

In this study we have investigated the merger of two co-rotating radially stratified
two-dimensional vortices at high Reynolds number. Such a situation is relevant to
the mixing of two fluids of different densities in industrial contexts. We first revisited
the effects of viscosity on the merger of homogeneous vortices by direct numerical
simulations. We carefully validated our numerical methods, taking particular care
of the effects of the periodic boundary conditions imposed by our pseudospectral
approach. Then, we confirmed the experimental results by Meunier et al. (2002)
showing that the critical radii of the conditions for merger are a/by ~ 0.22 where
a/by is the ratio of the vortices to their separation distance. We also confirmed that
the time required to enter the stage of convective merger depends linearly on the
Reynolds number. This is indeed due to an initial viscous spreading of the vortices.

For the inhomogeneous cases, we also observed this linear dependence and it has
been used to measure the critical value for a/b,. We have shown that vortices carrying
light fluid merge from a greater distance than do homogeneous vortices. On the
contrary, vortices carrying heavy fluid must be much closer to merge, and when At >
0.6, the merger takes place only if the diffusion has significantly decreased the density
gradients. These differences are associated with a vorticity production/destruction
term, the baroclinic torque. The baroclinic torque is non-zero as far as the local
acceleration misaligns with the density gradient. Here it is the case because the
vortices, initially barotropic, deform one another from the start of the interaction. It
is shown that on each vortex the baroclinic vorticity is organized at the early stages of
the interaction as quadrupoles of alternate sign. The quadrupole attached to a vortex
attracts or pushes away the second vortex and vice versa. In the case of light vortices,
the vortices are attracted to each other. This decrease in their separation distance
strengthens the interaction, and the vortices merge rapidly. On the other hand, in the
case of heavy vortices, the added baroclinic vorticity quadrupole acts in the opposite
way, increasing the distance between the vortices, and decreasing the strength of the
interaction.
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h 0.8 0.6 0.4 1/m 0.2 0.15 0.1
N 210 288 420 512 792 1120 1584

TaBLE 2. Characteristics of the preliminary test varying the ratio i = (bg+2ry)/L of vortex-pair
width to calculation-domain width. Associated spatial resolution is Ny X Ny with Ny = Ny, = N

These results open avenues which are beyond the scope of this paper. A natural
next question is, what is the influence of asymmetries in the initial conditions? In
this study, we have limited attention to symmetric vortices to focus on the basic new
phenomenology appearing with the density stratification. Yet it is known that even
in the uniform density case, vortices of different circulation merge differently (see
Dritschel 1995). In this case, we frequently observe partial merger, where more than
one coherent structure results from the interaction. This open question is important
since vortices of different circulation would naturally interact in complex flows such
as turbulence. Another essential open question lies on the merger of vortices of
unequal density stratification. For example, since it is shown that light vortices
behave differently from heavy vortices, another asymmetry to be considered is the
interaction between a light vortex and an heavy vortex in a medium counterpart.
Finally, the study of the interaction between two three-dimensional columnar vortices
and the emergence of three-dimensional modes is also to be explored.

Appendix. Controlling the effect of the boundary conditions

Considering the whole vortex system, we note that the distance between the
outermost edges of the vortices is by + 2ro. We define h = (by + 2r¢)/Lp, the ratio
of the vortex-pair width to the domain width Lp. When focusing on binary-vortex
interactions, we must confine the vortices well into the centre of the domain, i.e. take
h to be small, to avoid the spurious influence of the periodic boundary conditions.
Preliminary simulations are carried out in the homogeneous situation to validate
a fair compromise between the computation cost and the sensitivity of the merger
process to the parameter h. We preserve the spatial resolution of the vortex pair
for a Reynolds number Re = 6000 and an initial separation distance by = 2.6ry.
Corresponding grid sizes are given in table 2.

We first measure the turnover period of the pair of vortices by following one of the
vortices during the first quarter of a turnover. We also measure the time evolution
of the distance b between the two vortices. This distance corresponds to the distance
between the two local extrema of the streamfunction 1, which indicate the centre of
each vortex. Finally, we measure a ‘merger time’ ¢y, which corresponds to the time
elapsed until b decreases to a fraction f of the initial separation by, i.e. b(ty)/by = f.

From figure 14(a), we conclude that the effective turnover period T is under-
estimated by T, = 2n°b}/I" for a size ratio above h = 1/m. Equivalently it may be
said that, owing to stringent boundary conditions, the numerical simulation fails to
reproduce the kinematics of a point vortex pair for a size ratio above h = 1/m.
The corresponding time evolution of the separation distance (figure 14b), is seen to
depend strongly on & for & > 0.4. This is confirmed in figure 14(c), showing that ¢, is
unaffected provided & < 0.4. It is concluded that the merger is artificially favoured for
h > 0.4 and insensitive to the periodicity of the flow for weaker confinement of the
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FiGURE 14. Influence of the periodic boundary conditions, on the merger process. (a) The
turnover period T normalized by the turnover period of a point vortex pair Ty = 2rn’h3/T .
(b) Evolution of the separation distance with curves from left to right for decreasing h.
(c) Merger time ¢ measured for different fractions f of the separation distance: —, f=0.4;
———, f = 0.6; ——, f=0.8. Solid symbols in (a) and (c¢) are for h = 1/n which is the
compromise selected hereinafter.

vortex pair. We choose to set 2 = 1/m both to retrieve an accurate turnover period
and to measure a merger time insensitive to the width of the calculation domain.
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